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SUMMARY

_In two-phase sampling, when thie two samples are drawn independéntly, the
suggested multivariate regression estifidtor and geriéralised two-phase estima-
tor have been shown to have smaller mean square error than the corrésponding
usual multivariate regression estimator and Srivastava’s [5] estimator. When
the coefficients of the proposed estimators, are estimated, Expected mean
square error under a suitable model are also derived.
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1. Introduction

Sometimes, information on multi-auxiliary variables xj, ..., Xp each
of size NN are available though their population mean vector Xis unknown.
To utilise this information, the application of two-phase sampling is well-
known in the literature. Srivastava [5] assumed that all the p-auxiliary
variables are measured on each individual in the first-phase sample of
size n, (x' denotes mean vector) and then a second-phase sample of size
n is drawn independently of the first-phase sample on each member of
which the character under study y and the auxiliary variables are measur-
ed (5 and % denotes respective mean and mean vector). His proposed
generalised two-phase estimator for Y(Yw) is superior than the correspond-
ing usual regression estimator. Rao-[3] dealing with one auxiliary vari-
able has suggested two estimates-i.e. X, (the best linear combination of
the two independent samples) and X, (mean based on v distinct units in
two independent samples) for X. Srivastava’s [5] estimator with one auxi-
liary variable is as precise as the regression estimator when X is estimated
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by . Further, Rao [3]has Qhown that the efficiency of the regression estl-
mator of ¥ w111 increase when X is estimated by X, instead of X, or X'.

In this paper, an attempt has been made to extend the two-phase
regression estimator for Y due to Rao [5], when the information on more
than one-auxiliary variable is available. In Section 2, a more generalised
two-phase estimator than that of Srivastava’s [5] has also been considered,
when two-samples are drawn independently. When the coefficients in the
proposed multivariate regression estimators are estimated, expected mean
square error of the.estimator under a suitable model is given in Section 3.
In this study, samples have been drawn according to simple random
samphng without replacement. Henceforth x will denotes the vector of

auxiliary variables.

2. Multivariate Regression Estimator and Generalised Estimator

It can easily be seen that the multivariate regression estimator for ¥
when the X is estimated by X, is as precise as that of Srivastava’s [1981]
estimator. So, here we have considered the multivariate regression esti-
mator for Y when X is estimated by X, i.e.

Fo=19+ B (%o — %) @.1)
where B'i isa column vector of p constants to be determined 50 that the

vanance of the estimator y,, is minimal. Clearly, for fixed B, y,, provides
an unblased estimator of Y. Under the usual notatlons

Cov (Zys, %) = V(%) = [E (7) — ﬁ] Sats
Cov (7, X)) = [E(IT) — %] Syat

e 7-__}':_' . S el 1 B 1
Cov (X; %yp) = Cov (X, %)) =[E(7) — TV_]
: Sxxsi#ji=1,2,.

and
E (i) = f’; D:  where Dy ="1/(n; + n)
- \Y k=0 ,
aﬁc-l;‘ ' -
Devy . (n—k)y(m—k)

Dy -(n—{—nl—k—l)(N—-kj'
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Though, in a particular sample, the number of distinct units vary with
auxiliary variable, the expectation of the reciprocals of these will be the
same because the sample sizes at first-phase and second—phase are same
for all auxiliary variables. Therefore, the variance of p, is

VG = [% — ']7] S2 -+ [7 — E(;)] S2[B'AB — B'd] (2.2)

where 4 = [ay] be p X p positive definite matrix with ai; = Sz S/ SE
and d’ = (dy, ..., dp) with di = Syx;/Sg. The variance in (2.2) is mini-
mized for ' :

= Ad 2.3)

and the minimum variance is given by
Vo (o) = 7 — —] Sy [— — E( i ):]R2 sz (2.4
where R? is the multiple correlation coefficient between y and Xy, . . . , X,

Clearly, Vo (y,,) is smaller than the variance of the Srivastava [5] estimator.
" If X is estimated by X,, than Srivastava’s [5] type estimator for Yis

=3h@® 2.5)
where h (u) is any function of # which is a column vector with elements
= X Wxi(i=1,...,p). Clearly, Rao’s [4] ratio estimator is a parti-

cular case of (2.5). Followmg the approach similar to that adopted by
Srivastava [5] it can be easily seen that minimum asymptotic mean square
efror of the estimator #, is equal to (2.4).

The class of estimators (2.5) does not include the regress1on type esti:
mator such as (2.1). However, even if we consider a wider class of esti-

" mators, i.e.

to, =g (9, u) ' (2.6)

of Y, which includes the estimator (2.1) and where g is ‘a function of J

. and #, such that

e, )=7Y ' Q.7

The minimum asymptotlc mean square error of the #; is equal to (2. 4)
and is not reduced

3, Multivariate Regression Estimator when Coefficients are Estimated _

Khan and Tripathi [2] have given expected mean square error of the
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multivariate regression estimator when Bis estimated by b, the least square
estimates obtained from the second-phase sample and X is estimated by
%', When B is estimated by b, the estimator p, becomes

o= 5 b (B D). o 3.1y

The mean square error of yv for the ﬁmte populatlon is

MGy-ksaG - 6

where . ~

W = (»]Y)andc:_-(N)
m n
“The model that has been considered is

yj=oc+ij+ej (j‘=1,...,N)' - (33)

with E (ej l-.X'j)'“: 0, E(ej é;j | X x,-) = 0 and V(ej | x,-) = SZ% (1 — R?),
Further, it is assumed that x; are drawn from a multivariate population
with mean vector g and variance covariance matrix 2. From (3.3)

Jom¥=(—=B =%+ B (F,—X) + e —n (3.4
By averaging over the distribution of e’s, it follows from (3.4) that under
(3.3) 7y is unbiased for fixed X’s. Further, from (3.4)

Go— PP = @ — 20 + B (B — X) (8, — D' B+ (% — %' [t
{2 el (x; — %) (xj — X)'} aY] (%, — X) + terms whose
expectation is zero _ ’ (3.5)

where a is the sample variance covariance matrix of auxiliary variables.
Now

EE (E,,—EN)2=[—;— —-~lsma—ry (3.6)

and EE [B' (%, — X) (5 — X) Bl = [E(%) — Wl—] R 82 -1(3.7) »

The expectation over the finite population and then over the superpopula-
tion of the last terms in (3.5) has been

1 SS0=R-p e
[ E ( ) n—p—2 - 3.8) :
following the approach similar to that adopted by Rao [3]. We get

o Gy=[5(L) -~ Mo+ [Lop(L)]S0=RG=2
- | ' . (3.9)
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‘Sim'i'l'arly, ‘the expected mean square error of the multivariate regression
estimator when X is estimated by X, can be obtained by replacing E (1/v)
in (3.9) by 1/n,. Cléarly, EM (3.) is smaller than that of expected mean
square error of the corresponding regression estimator when X is estimated
by %, or X'. o

The unbiased estimate of the expression in (3.9) is

nGo=[3-y]+ (- 3)i5er
where _ ‘
s2=Z (@ — e — 1),
and’ ) .
=Xy —~»—b @—De—p—1
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