ON TWO-PHASE MULTIVARIATE SAMPLING ESTIMATOR

PRADEEF KUMAR BEDI

Department of Statistics, University of Rajasthan, Jaipur-302004

(Received: October, 1982)

SUMMARY

In two-phase sampling, when the two samples are drawn independently, the suggested multivariate regression estimator and generalised two-phase estimator have been shown to have smaller mean square error than the corresponding usual multivariate regression estimator and Srivastava's [5] estimator. When the coefficients of the proposed estimators, are estimated, Expected mean square error under a suitable model are also derived.

Keywords: Multivariate Regression estimator; Generalised two-phase estimator; Minimum variance; Minimum asymptotic mean square error.

1. Introduction

Sometimes, information on multi-auxiliary variables x_1, \ldots, x_p each of size N are available though their population mean vector \overline{X} is unknown. To utilise this information, the application of two-phase sampling is well-known in the literature. Srivastava [5] assumed that all the p-auxiliary variables are measured on each individual in the first-phase sample of size n_1 (x' denotes mean vector) and then a second-phase sample of size n is drawn independently of the first-phase sample on each member of which the character under study p and the auxiliary variables are measured (\overline{p} and \overline{x} denotes respective mean and mean vector). His proposed generalised two-phase estimator for $\overline{Y}(\overline{Y}_N)$ is superior than the corresponding usual regression estimator. Rao [3] dealing with one auxiliary variable has suggested two estimates i.e. \overline{x}_w (the best linear combination of the two independent samples) and \overline{x}_v (mean based on p distinct units in two independent samples) for \overline{X} . Srivastava's [5] estimator with one auxiliary variable is as precise as the regression estimator when \overline{X} is estimated

by \bar{x}_w . Further, Rao [3] has shown that the efficiency of the regression estimator of \bar{Y} will increase when \bar{X} is estimated by \bar{x}_v instead of \bar{x}_w or \bar{x}' .

In this paper, an attempt has been made to extend the two-phase regression estimator for \overline{Y} due to Rao [5], when the information on more than one-auxiliary variable is available. In Section 2, a more generalised two-phase estimator than that of Srivastava's [5] has also been considered, when two-samples are drawn independently. When the coefficients in the proposed multivariate regression estimators are estimated, expected mean square error of the estimator under a suitable model is given in Section 3. In this study, samples have been drawn according to simple random sampling without replacement. Henceforth x will denotes the vector of auxiliary variables.

2. Multivariate Regression Estimator and Generalised Estimator

It can easily be seen that the multivariate regression estimator for \overline{Y} when the \overline{X} is estimated by \overline{x}_w is as precise as that of Srivastava's [1981] estimator. So, here we have considered the multivariate regression estimator for \overline{Y} when \overline{X} is estimated by \overline{x}_v i.e.

$$\hat{\bar{y}}_{v} = \bar{y} + B'(\bar{x}_{v} - \bar{x}) \tag{2.1}$$

where B' is a column vector of p constants to be determined so that the variance of the estimator \hat{y}_v is minimal. Clearly, for fixed B, \hat{y}_v provides an unbiased estimator of \overline{Y} . Under the usual notations

$$\operatorname{Cov}\left(\bar{x}_{vi}, \, \bar{x}_{i}\right) = V(\bar{x}_{vi}) = \left[E\left(\frac{1}{\nu}\right) - \frac{1}{N}\right] S_{xi}^{2},$$

$$\operatorname{Cov}\left(\bar{y}, \, \bar{x}_{vi}\right) = \left[E\left(\frac{1}{\nu}\right) - \frac{1}{N}\right] S_{yxi}$$

$$\operatorname{Cov}\left(\bar{x}_{i} \, \bar{x}_{vj}\right) = \operatorname{Cov}\left(\bar{x}_{vi}, \, \bar{x}_{j}\right) = \left[E\left(\frac{1}{\nu}\right) - \frac{1}{N}\right]$$

$$S_{x_{i}x_{j}} \, i \neq j = 1, 2, \dots, p$$

and

$$E\left(\frac{1}{\nu}\right) = \sum_{k=0}^{n} D_k$$
 where $D_0 = 1/(n_1 + n)$

and

$$\frac{D_{k+1}}{D_k} = \frac{(n-k)(n_1-k)}{(n+n_1-k-1)(N-k)}.$$

Though, in a particular sample, the number of distinct units vary with auxiliary variable, the expectation of the reciprocals of these will be the same because the sample sizes at first-phase and second-phase are same for all auxiliary variables. Therefore, the variance of \hat{y}_{ν} is

$$V\left(\widehat{\widehat{y}}_{v}\right) = \left[\frac{1}{n} - \frac{1}{N}\right] S_{y}^{2} + \left[\frac{1}{n} - E\left(\frac{1}{v}\right)\right] S_{y}^{2} \left[B'AB - B'd\right]$$
 (2.2)

where $A = [a_{ij}]$ be $p \times p$ positive definite matrix with $a_{ij} = S_{xi} S_{xj}/S_y^2$ and $d' = (d_1, \ldots, d_p)$ with $d_1 = S_{yx_i}/S_y^2$. The variance in (2.2) is minimized for

$$B = A^{-1} d \tag{2.3}$$

and the minimum variance is given by

$$V_{\mathbf{0}}(\widehat{\mathbf{y}}_{\mathbf{v}}) = \left[\frac{1}{n} - \frac{1}{N}\right] S_{\mathbf{y}} - \left[\frac{1}{n} - E\left(\frac{1}{\nu}\right)\right] R^{2} S_{\mathbf{y}}^{2}$$
 (2.4)

where R^2 is the multiple correlation coefficient between y and x_1, \ldots, x_2 . Clearly, $V_0(\hat{y}_v)$ is smaller than the variance of the Srivastava [5] estimator. If \overline{X} is estimated by \overline{x}_v , than Srivastava's [5] type estimator for \overline{Y} is

$$t_v = \bar{v} \ h \ (\mathbf{u}) \tag{2.5}$$

where h(u) is any function of u which is a column vector with elements $u_i = \bar{x}_{vi} \sqrt{x_i}$ $(i = 1, \ldots, p)$. Clearly, Rao's [4] ratio estimator is a particular case of (2.5). Following the approach similar to that adopted by Srivastava [5] it can be easily seen that minimum asymptotic mean square error of the estimator t_v is equal to (2.4).

The class of estimators (2.5) does not include the regression type estimator such as (2.1). However, even if we consider a wider class of estimators, i.e.

$$t_{a} = g\left(\bar{y}, \mathbf{u}\right) \tag{2.6}$$

of \overline{Y} , which includes the estimator (2.1) and where g is a function of \overline{y} and u, such that

$$g(\overline{Y},1) = \overline{Y} \tag{2.7}$$

The minimum asymptotic mean square error of the t_{σ} is equal to (2.4) and is not reduced.

3. Multivariate Regression Estimator when Coefficients are Estimated

Khan and Tripathi [2] have given expected mean square error of the

multivariate regression estimator when B is estimated by \underline{b} , the least square estimates obtained from the second-phase sample and \overline{X} is estimated by \overline{x}' . When B is estimated by b, the estimator \hat{y}_v becomes

$$\hat{\bar{y}}_v = \bar{y} + b' \left(\bar{x}_v - \bar{x} \right) \tag{3.1}$$

The mean square error of \hat{y}_v for the finite population is

$$M(\hat{y}_v) = \frac{1}{u'c} \Sigma \Sigma (\hat{y}_v - \overline{Y})^2$$
(3.2)

where

$$u' = \binom{N}{n_1}$$
 and $c = \binom{N}{n}$

The model that has been considered is

$$y_j = \alpha + B x_j + e_j \quad (j = 1, ..., N)$$
 (3.3)

with $E(e_j \mid x_j) = 0$, $E(e_j \mid e_j \mid x_j \mid x_j) = 0$ and $V(e_j \mid x_j) = S_y^2 (1 - R^2)$. Further, it is assumed that x_j are drawn from a multivariate population with mean vector μ and variance covariance matrix Σ . From (3.3)

$$\hat{\bar{y}}_v - \bar{Y} = (b - B)' (\bar{x}_v - \bar{x}) + B' (\bar{x}_v - \bar{X}) + \bar{e}_n - \bar{e}_N$$
(3.4)

By averaging over the distribution of e's, it follows from (3.4) that under (3.3) \hat{y}_v is unbiased for fixed \bar{x} 's. Further, from (3.4)

$$(\widehat{\bar{y}}_{v} - \overline{Y})^{2} = (\overline{e}_{n} - \overline{e}_{N})^{2} + B'(\overline{x}_{v} - \overline{X})(\overline{x}_{v} - \overline{X})'B + (\overline{x}_{v} - \overline{x})'[a^{-1}]$$

$$\{\Sigma e_{j}^{2}(x_{j} - \overline{x})(x_{j} - \overline{x})'\} a^{-1}](\overline{x}_{v} - \overline{x}) + \text{terms whose}$$
expectation is zero (3.5)

where a is the sample variance covariance matrix of auxiliary variables. Now

$$EE(\bar{e}_n - \bar{e}_N)^2 = \left[\frac{1}{n} - \frac{1}{N}\right] S_y^2 (1 - R^2)$$
 (3.6)

and
$$EE[B'(\bar{x}_v - \overline{X})(\bar{x}_{\bar{v}} - \overline{X})'B] = \left[E\left(\frac{1}{v}\right) - \frac{1}{N}\right]R^2S_y^2$$
 (3.7)

The expectation over the finite population and then over the superpopulation of the last terms in (3.5) has been

$$\left[\frac{1}{n} - E\left(\frac{1}{\nu}\right)\right] \frac{S_{\nu}^{2}(1-R) \cdot p}{n-p-2} \tag{3.8}$$

following the approach similar to that adopted by Rao [3]. We get

$$EM\left(\widehat{\widehat{y}_{v}}\right) = \left[E\left(\frac{1}{v}\right) - \frac{1}{N}\right]S_{y}^{2} + \left[\frac{1}{n} - E\left(\frac{1}{v}\right)\right]\frac{S_{y}^{2}\left(1 - R^{2}\right)\left(n - 2\right)}{n - p - 2}$$
(3.9)

Similarly, the expected mean square error of the multivariate regression estimator when \overline{X} is estimated by \overline{x}_w can be obtained by replacing $E(1/\nu)$ in (3.9) by $1/n_1$. Clearly, $EM(\widehat{y}_v)$ is smaller than that of expected mean square error of the corresponding regression estimator when \overline{X} is estimated by \overline{x}_w or \overline{x}' .

The unbiased estimate of the expression in (3.9) is

$$m(\hat{y}_v) = \left[\frac{1}{v} - \frac{1}{N}\right] s_y^2 + \left(\frac{1}{n} - \frac{1}{v}\right) \frac{n-2}{n-p-2} s_e^2$$

where

$$s_y^2 = \sum (y_j - \bar{y})^2/(n-1),$$

and

$$s_e^2 = \sum_{i=1}^n [(y_i - \bar{y}) - b'(x_i - \bar{x})]^2/(n - p - 1)$$

REFERENCES

- [1] Cochran, W. G. (1977): Sampling Techniques (3rd ed). John Wiley and Sons, New York.
- [2] Khan, S. and Tripathi, T. P. (1967): The use of Multivariate auxiliary information in double sampling, JISA 5, 42-48.
- [3] Rao, P. S. R. S. (1972): On two-phase regression estimator, Sankhya A, 34: 473-76.
- [4] Rao, P. S. R. S. (1975): On two-phase ratio estimator in finite population, JASA 70; 839-45.
- 5] Srivastava, S. K. (1981): A generalized two-phase sampling estimator, JISAS 33:
- [6] Srivastava, S. K. and Jhajj, H. S. (1980): A class of estimators using auxiliary information for estimating finite population variance, Sankhya C, 42: 87-96.