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Summary

Intwo-phase sampling, when tlie" two samples are drawn ihdependeritly, the
suggested multivariate regression estimator and generalised two-phase estima
torhave been shown tohave smaller mean square error thaii the corresponding
usual multivariate regression estimator and Srivastava's [5] estimator. When
the coefficients of the proposed estimators, are estimated, Expected mean ^
square error under a suitable model arealso derived.
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1. Introduction

Sometimes, information on multi-auxiliary variables a:i, , Xp each
of size N areavailable though theirpopulation mean vector Xis unknown.
To utilise this information, the application of two-phase sampling iswell-
known in the literature. Srivastava [5] assumed that all the p-auxiliary
variables are measured on each individual in the first-phase sample of
size Ml (x' denotes mean vector) and then a second-phase sample of size
n is drawn independently of the first-phase sample on each member of
which the character under study y and the auxiliary variables are measur
ed (y and x denotes respective me£n_and mean vector). His proposed '
generalised two-phase estimator for Y{Yn) is superior than the correspond
ing usual regression estimator. Rao [3] dealing with one auxiliary vari- ^
able has suggested two estimates i.e. (the best linear combination of
the two independent samples)_and (inean based on vdistinct units in
two independent samples) for X. Srivastava's [5] estimator with one auxi
liary variable isas precise as the regression estimator when X isestimated
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by Xa. Fji^er, Rao [3] has shown that the efficiency of the regression esti
mator of Ywill increase when X is estimated by instead of Xy, or x'. ,

In this paper, an attempt has been made to extend the two-phase
regression estimator for Y due to Rao [5], when the information on more
than one-auxiliary variable is available. In Section 2, a more generalised
two-phase estimator than that of Srivastava's [5] has also been considered,
when two-samples are drawn independently. When the coefiScients in the
proposed multivariate regression estimators are estimated, expected mean
square error of the estimator under a suitable model is given in Section 3.
In this study, samples have been drawn according to simple random
sampling without replacement. Henceforth will denotes the vector of
auxiliary variables.

2. Multivariate Regression Estimator and Generalised Estimator

It can ^sily be seen that the multivariate regression estimator for Y
when the X is estimated by x^ is as precise as that of Srivastava's [1981]
estimator._So, here_we have considered the multivariate regression esti
mator for Y when X is estimated by i.e.

= y + (X, - x) (2.1)

where B' is a column vector of p constants to be determined so that the
variance of the estimator is minimal. Clearly, for fixed B, provides
an unbiased estimator of Y. Under the usual notations

Cov (x,(, x,)=V (.x,i) =[£(-1j ±
Coy (y, x„i) = ^——Syxi

Cov (x'i x,j) =Cov X,) =[£ ^
Sxixii 1,2,...,P

E = S Di where Dq = 1/(«i + n)
\y J Ar=o

and

and

•P*+i _ (jt~ k) (rti —k)
Du (it + Hi —k — \) {N —k)'
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Though, in a particular sample, the number of distinct units vary with
auxiliary variable, the expectation of the reciprocals of these will be the
same because the sample sizes at first-phase and second-phase are same
for all auxiliary variables. Therefore, the variance of is

V(J.) =\y - i] SI +[^ - SI IITAB - m (2.2)
where A = [fli;] he p X p positive definite matrix with aij = Sxi SxjjS^
and d' = (di, .. . , dp) with di = SyxJS^. The variance in (2.2) is mini
mized for

B=A'^d

and the minimum variance is given by

(2.3)

Vo (?.)
l-

n

g(Y,l)=Y

J
iVj

where is the multiple correlation coefficient betweeny and Xj, , Xj.
Clearly, Vq (pv) issmaller than the variance of the Srivastava [5] estimator.
• If Z is estimated by x^, than Srivastava's [5] type estimator for Y is

tv = yh (k) (2-5)
where h («) is any function of u which is a column vector with elements
Ui = x^i 4'xi (i = I, . . . ,p). Clearly, Rao's [4] ratio estimator is aparti
cular case of (2.5). Following the approach similar to that adopted by
Srivastava [5] it can be easily seen that minimum asymptotic meansquare
error of the estimator is equal to (2.4).

The class of estimators (2.5) does not include the regression type esti
mator such as (2.1). However, even if we consider a wider class of esti
mators, i.e.

= g (y, «) (2-6)

of y, which includes the estimator (2.1) and where g is 'a function of y
and K, such that

(2.7)

The TninimnTn asymptotic mean square error of the tg is equal to (2.4)
and is not reduced.

3. Multivariate Regression Estimator when CoefiBcients are Estimated

IChan and Tripathi [2] have given expected mean square error of the
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multivariate regression estimator whenBis estimated the least square
estimates obtained from the second-phase sample and X is estimated by
x'. When Bis estimated by b, the estimator ij.ecomes

+ b'{x,-x)

The mean square error of jo for the finite population is

M S S - yY
U C-

where

„-= (.^)and.= (^)

(3.1)

(3.2)

.The model that has been considered is

= a + + = (3.3)

with E (cj 1:!c^) = 0, £• (ej ej \ xj Xj) = 0 and V (ej \ xj) = (1 —B?).
Further, it is assumed that Xj are drawn from a multivariate population
with mean vector [a and variance covariance matrix S. From (3.3)

- T = (6 - B)' (x„ -x) + B' (5c^ - Z) + (3.4)'
By averaging over the distribution of e's, it follows from (3.4) that under
(3.3) is unbiased for fixed jc's. Further, from (3.4)

(5, - yY = {e„ - bnY +_B' (x, - x) (x, -xYB+ (x, - X)' [cr\
{S ej {xj —:>(:) (xj —x)'} a~'̂ ] (^® —X) terms whose
expectation is zero (3.5)

where a is the sample variance covariance matrix of auxiliary variables.
Now

•J_ _
.n N.

EE {en —eNf = (3.6)

and EE [B' {x, - X) - X)' 5] =[ B? (3.7)
The expectation over the finite population and then over the superpopula-
tion of the last terms in (3.5) has been

, (3:s,
following the approach similar to that adopted by Rao [3]. We get

EM (f.) =[£(i) - ±] 5; +[i
(3.9)
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Similarly, the ejected mean square error of the multivariate regression
estimator when X is estimated by can be obtained by replacing E (l/y)
in (3.9) by l/«i. Clearly, EM Qv) is smaller than that of ejected mean
square error ofthecorresponding regression estimator when Xis estimated
by or x'.

The unbiased estimate of the expression in (3.9) is

— 1Y n—2 2
'«(a) = Lv- FjU vln-p-2

where

4 = S (j, - j)V(« - 1),

and

j2 = s [(yj -y)-b' {xj - x)fKn -p-l)
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